Reduction of one-loop amplitudes at the integrand level—NLO QCD calculations

Costas G. Papadopoulos

NCSR “Demokritos”, Athens

Epiphany 2008, Krakow, 3-6 January 2008
1 Introduction: Wishlists and Troubles

2 OPP Reduction

3 Numerical Tests
 - 4-photon amplitudes
 - 6-photon amplitudes
 - ZZZ production
The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)

In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms
Introduction: LHC needs NLO

- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course).
- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms.
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO).
The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)

In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms

The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)

As a result, a big effort has been devoted by several groups to the problem of an efficient computation of one-loop corrections for multi-particle processes!
Wishlist Les Houches 2007

1. \(pp \rightarrow V V + \text{jet} \)
2. \(pp \rightarrow t\bar{t} b\bar{b} \)
3. \(pp \rightarrow t\bar{t} + 2 \text{ jets} \)
4. \(pp \rightarrow W W W \)
5. \(pp \rightarrow V V b\bar{b} \)
6. \(pp \rightarrow V V + 2 \text{ jets} \)
7. \(pp \rightarrow V + 3 \text{ jets} \)
8. \(pp \rightarrow t\bar{t} b\bar{b} \)
9. \(pp \rightarrow 4 \text{ jets} \)

Processes for which a NLO calculation is both desired and feasible

Will we “finish” in time for LHC?
What has been done? (2005-2007)

Some recent results → Cross Sections available

- $pp \rightarrow ZZZ \rightarrow t\bar{t}Z$ [Lazopoulos, Melnikov, Petriello]
- $pp \rightarrow H + 2$ jets [Campbell, et al., J. R. Andersen, et al.]
- $pp \rightarrow VV + 2$ jets via VBF [Bozzi, Jäger, Oleari, Zeppenfeld]

Mostly $2 \rightarrow 3$, very few $2 \rightarrow 4$ complete calculations.

- $e^+ e^- \rightarrow 4$ fermions [Denner, Dittmaier, Roth]
- $e^+ e^- \rightarrow HH\nu\bar{\nu}$ [GRACE group (Boudjema et al.)]

This is NOT a complete list
(A lot of work has been done at NLO → calculations & new methods)
NLO troubles

Problems arising in NLO calculations

- Large Number of Feynman diagrams
- Reduction to Scalar Integrals (or sets of known integrals)
- Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities)
- Extraction of soft and collinear singularities (we need virtual and real corrections)
Methods available

- **Traditional** Method: Feynman Diagrams & Passarino-Veltman Reduction:
 - general applicability major achievements
 - but major problem: not designed @ amplitude level
Methods available

- **Traditional** Method: Feynman Diagrams & Passarino-Veltman Reduction:

- **Semi-Numerical** Approach (Algebraic/Partly Numerical – Improved traditional) → Reduction to set of well-known integrals

- **Numerical** Approach (Numerical/Partly Algebraic) → Compute tensor integrals numerically
 - Ellis, Giele, Glover, Zanderighi;
 - Binoth, Guillet, Heinrich, Schubert;
 - Denner, Dittmaier; Del Aguila, Pittau;
 - Ferroglia, Passera, Passarino, Uccirati;
 - Nagy, Soper; van Hameren, Vppinga, Weinzierl;
Methods available

- **Traditional** Method: Feynman Diagrams & Passarino-Veltman Reduction:

- **Semi-Numerical** Approach (Algebraic/Partly Numerical – Improved traditional) → Reduction to set of well-known integrals

- **Numerical** Approach (Numerical/Partly Algebraic) → Compute tensor integrals numerically

- **Analytic** Approach (Twistor-inspired)
 → extract information from lower-loop, lower-point amplitudes
 → determine scattering amplitudes by their poles and cuts
 - major advantage: designed to work @ amplitude level
 - **quadruple and triple cuts major simplifications**
 - Bern, Dixon, Dunbar, Kosower, Berger, Forde;
 - Anastasiou, Britto, Cachazo, Feng, Kunszt, Mastrolia;
Methods available

- **Traditional** Method: Feynman Diagrams & Passarino-Veltman Reduction:

- **Semi-Numerical** Approach (Algebraic/Partly Numerical – Improved traditional) → Reduction to set of well-known integrals

- **Numerical** Approach (Numerical/Partly Algebraic) → Compute tensor integrals numerically

- **Analytic** Approach (Twistor-inspired)
 → extract information from lower-loop, lower-point amplitudes
 → determine scattering amplitudes by their poles and cuts

☆ **OPP Integrand-level reduction combine:** PV@integrand + n-particle cuts
Any m-point one-loop amplitude can be written, before integration, as

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}$$

A bar denotes objects living in $n = 4 + \epsilon$ dimensions

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2$$

$$\bar{q}^2 = q^2 + \tilde{q}^2$$

$$\bar{D}_i = D_i + \tilde{q}^2$$

External momenta p_i are 4-dimensional objects
The old “master” formula

\[
\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)
+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2)
+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1)
+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0)
+ \text{rational terms}
\]
General expression for the 4-dim $N(q)$ at the integrand level in terms of D_i

\[
N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\
+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\
+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\
+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i
\]
The quantities \(d(i_0i_1i_2i_3) \) are the coefficients of 4-point functions with denominators labeled by \(i_0, i_1, i_2, \) and \(i_3 \).

\(c(i_0i_1i_2), b(i_0i_1), a(i_0) \) are the coefficients of all possible 3-point, 2-point and 1-point functions, respectively.
\[N(q) = \sum_{i_0 < i_1 < i_2 < i_3} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3} D_i + \sum_{i_0 < i_1 < i_2} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2} D_i \\
+ \sum_{i_0 < i_1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1} D_i + \sum_{i_0} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0} D_i \]

The quantities \(\tilde{d}, \tilde{c}, \tilde{b}, \tilde{a} \) are the “spurious” terms

- They still depend on \(q \) (integration momentum)
- They should vanish upon integration

What is the explicit expression of the spurious term?
Express any q in $N(q)$ as

$$q^\mu = -p_0^\mu + \sum_{i=1}^{4} G_i \ell_i^\mu, \quad \ell_i^2 = 0$$

$$k_1 = \ell_1 + \alpha_1 \ell_2, \quad k_2 = \ell_2 + \alpha_2 \ell_1, \quad k_i = p_i - p_0$$

$$\ell_3^\mu = <\ell_1|\gamma^\mu|\ell_2>, \quad \ell_4^\mu = <\ell_2|\gamma^\mu|\ell_1>$$

The coefficients G_i either reconstruct denominators D_i

\rightarrow They give rise to d, c, b, a coefficients
Express any q in $N(q)$ as

$$q_\mu = -p^\mu_0 + \sum_{i=1}^{4} G_i \ell^\mu_i , \ell_i^2 = 0$$

- The coefficients G_i either reconstruct denominators D_i or vanish upon integration
- They give rise to d, c, b, a coefficients
- They form the spurious $\tilde{d}, \tilde{c}, \tilde{b}, \tilde{a}$ coefficients
\(\tilde{d}(q) \) term (only 1)

\[
\tilde{d}(q) = \tilde{d} \, T(q),
\]

where \(\tilde{d} \) is a constant (does not depend on \(q \))

\[
T(q) \equiv Tr[(\gamma + \rho_0)\gamma_1\gamma_2\gamma_3\gamma_5]
\]
Spurious Terms - II

- $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} \, T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\hat{q} + \hat{p}_0)\ell_1\ell_2\ell_3\gamma_5]$$

- $\tilde{c}(q)$ terms (they are 6)

$$\tilde{c}(q) = \sum_{j=1}^{j_{max}} \left\{ \tilde{c}_{1j} [(q + p_0) \cdot \ell_3]^j + \tilde{c}_{2j} [(q + p_0) \cdot \ell_4]^j \right\}$$

In the renormalizable gauge, $j_{max} = 3$
\(\tilde{d}(q) \) term (only 1)

\[
\tilde{d}(q) = \tilde{d} \, T(q),
\]

where \(\tilde{d} \) is a constant (does not depend on \(q \))

\[
T(q) \equiv Tr[(\not{q} + \not{p}_0) \gamma_1 \gamma_2 \gamma_3 \gamma_5]
\]

\(\tilde{c}(q) \) terms (they are 6)

\[
\tilde{c}(q) = \sum_{j=1}^{j_{\text{max}}} \{ \tilde{c}_{1j} [(q + p_0) \cdot \ell_3]^j + \tilde{c}_{2j} [(q + p_0) \cdot \ell_4]^j \}
\]

In the renormalizable gauge, \(j_{\text{max}} = 3 \)

\(\tilde{b}(q) \) and \(\tilde{a}(q) \) give rise to 8 and 4 terms, respectively
A simple example

\[\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \]
A simple example

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \\
1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]
A simple example

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]
A simple example

\[\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \]

\[1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} \]

\[\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} \]

\[\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3) \]
A simple example

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]

\[
1 = \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} = \sum d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)
\]

\[
d(i_0 i_1 i_2 i_3) = \frac{1}{2} \left(\frac{1}{D_{i_4}(q^+)} + \frac{1}{D_{i_4}(q^-)} \right)
\]
A simple example

\[
\int \frac{1}{D_0 D_1 D_2 D_3 D_4} \sum \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4}
\]

Melrose, Nuovo Cim. 40 (1965) 181

Now we know the form of the spurious terms:

\[
N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i
+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i
+ \sum_{i_0 < i_1}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i
+ \sum_{i_0 < i_1}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i
\]

Our calculation is now reduced to an algebraic problem.
General strategy

Now we know the form of the spurious terms:

\[N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} [d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3)] \prod_{i \neq i_0, i_1, i_2, i_3} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} [c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2)] \prod_{i \neq i_0, i_1, i_2} D_i + \sum_{i_0 < i_1}^{m-1} [b(i_0 i_1) + \tilde{b}(q; i_0 i_1)] \prod_{i \neq i_0, i_1} D_i + \sum_{i_0}^{m-1} [a(i_0) + \tilde{a}(q; i_0)] \prod_{i \neq i_0} D_i \]

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating \(N(q) \) for a set of values of the integration momentum \(q \)
Now we know the form of the spurious terms:

\[
N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2} D_i \\
+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0} D_i
\]

Our calculation is now reduced to an algebraic problem

Extract all the coefficients by evaluating \(N(q) \) for a set of values of the integration momentum \(q \)

There is a very good set of such points: Use values of \(q \) for which a set of denominators \(D_i \) vanish → The system becomes “triangular”: solve first for 4-point functions, then 3-point functions and so on
Example: 4-particles process

\[N(q) = d + \tilde{d}(q) + \sum_{i=0}^{3} [c(i) + \tilde{c}(q; i)] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1} \]

\[+ \sum_{i_0=0}^{3} [a(i_0) + \tilde{a}(q; i_0)] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0} \]

We look for a \(q \) of the form \(q^\mu = -p_0^\mu + x_i \ell_i^\mu \) such that

\[D_0 = D_1 = D_2 = D_3 = 0 \]

→ we get a system of equations in \(x_i \) that has two solutions \(q_0^\pm \)
Example: 4-particles process

\[N(q) = d + \tilde{d}(q) \]

Our “master formula” for \(q = q_0^\pm \) is:

\[N(q_0^\pm) = [d + \tilde{d} T(q_0^\pm)] \]

→ solve to extract the coefficients \(d \) and \(\tilde{d} \)
\[N(q) - d - \tilde{d}(q) = \sum_{i=0}^{3} [c(i) + \tilde{c}(q; i)] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1} \]

\[+ \sum_{i_0 = 0}^{3} \left[a(i_0) + \tilde{a}(q; i_0) \right] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0} \]

Then we can move to the extraction of \(c \) coefficients using

\[N'(q) = N(q) - d - \tilde{d} T(q) \]

and setting to zero three denominators (ex: \(D_1 = 0, D_2 = 0, D_3 = 0 \))
\[N(q) - d - \tilde{d}(q) = [c(0) + \tilde{c}(q; 0)] D_0 \]

We have infinite values of \(q \) for which

\[D_1 = D_2 = D_3 = 0 \quad \text{and} \quad D_0 \neq 0 \]

→ Here we need 7 of them to determine \(c(0) \) and \(\tilde{c}(q; 0) \)
Rational Terms - I

Let's go back to the integrand

\[A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \]

Insert the expression for \(N(q) \rightarrow \) we know all the coefficients

\[N(q) = \sum_{i_0 < i_1 < i_2 < i_3} [d + \tilde{d}(q)] \prod_{i \neq i_0, i_1, i_2, i_3} D_i + \sum_{i_0 < i_1 < i_2} [c + \tilde{c}(q)] \prod_{i \neq i_0, i_1, i_2} D_i + \cdots \]

Finally rewrite all denominators using

\[\frac{D_i}{\bar{D}_i} = \bar{Z}_i, \text{ with } \bar{Z}_i \equiv \left(1 - \frac{\bar{q}^2}{D_i}\right) \]
Rational Terms - II

\[A(\bar{q}) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \frac{d(i_0 i_1 i_2 i_3) \bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2} \bar{D}_{i_3}}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} \prod_{i \neq i_0, i_1, i_2, i_3} \bar{Z}_i \]

\[+ \sum_{i_0 < i_1 < i_2}^{m-1} \frac{c(i_0 i_1 i_2) \bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2}}{\bar{D}_0 \bar{D}_1 \bar{D}_2} \prod_{i \neq i_0, i_1, i_2} \bar{Z}_i \]

\[+ \sum_{i_0 < i_1}^{m-1} \frac{b(i_0 i_1) \bar{D}_{i_0} \bar{D}_{i_1}}{\bar{D}_0 \bar{D}_1} \prod_{i \neq i_0, i_1} \bar{Z}_i \]

\[+ \sum_{i_0}^{m-1} \frac{a(i_0) \bar{D}_{i_0}}{\bar{D}_0} \prod_{i \neq i_0} \bar{Z}_i \]

The rational part is produced, after integrating over \(d^n q \), by the \(\bar{q}^2 \) dependence in \(\bar{Z}_i \)

\[\bar{Z}_i \equiv \left(1 - \frac{\bar{q}^2}{\bar{D}_i} \right) \]
The “Extra Integrals” are of the form

\[I_s^{(n;2\ell)} = \int d^n q \, \tilde{q}^{2\ell} \, \frac{q_{\mu_1} \cdots q_{\mu_r}}{\bar{D}(k_0) \cdots \bar{D}(k_s)}, \]

where

\[\bar{D}(k_i) \equiv (\bar{q} + k_i)^2 - m_i^2, \quad k_i = p_i - p_0 \]

These integrals:
- have dimensionality \(D = 2(1 + \ell - s) + r \)
- contribute only when \(D \geq 0 \), otherwise are of \(O(\epsilon) \)
Rational Terms - IV

Tensor reduction iteratively leads to rank m m-point tensors with $1 \leq m \leq 5$, that are ultraviolet divergent when $m \leq 4$. For this reason, we introduced, the d-dimensional denominators \bar{D}_i, that differs by an amount \bar{q}^2 from their 4-dimensional counterparts

$$\bar{D}_i = D_i + \bar{q}^2.$$ \hspace{1cm} (1)

The result of this is a mismatch in the cancelation of the d-dimensional denominators with the 4-dimensional ones. The rational part of the amplitude, called R_1, comes from such a lack of cancelation.

A different source of Rational Terms, called R_2, can also be generated from the ϵ-dimensional part of $N(q)$

R_2 are generated by the difference

$$\bar{N}(\bar{q}) - N(q) = \bar{q}^2 N_1 + \epsilon N_2$$
\[
\bar{q}^\mu = q^\mu + \tilde{q}^\mu \\
\bar{\gamma}^\mu = \gamma^\mu + \tilde{\gamma}^\mu \\
\tilde{q}^\mu \rightarrow \tilde{q}^2 \\
\tilde{\gamma}^\mu \rightarrow \epsilon
\]
Rational Terms - IV

\[
\int d^n \tilde{q} \frac{\tilde{q}^2}{\tilde{D}_i \tilde{D}_j} = -\frac{i\pi^2}{2} \left[m_i^2 + m_j^2 - \frac{(p_i - p_j)^2}{3} \right] + O(\epsilon),
\]

\[
\int d^n \tilde{q} \frac{\tilde{q}^2}{\tilde{D}_i \tilde{D}_j \tilde{D}_k} = -\frac{i\pi^2}{2} + O(\epsilon), \quad \int d^n \tilde{q} \frac{\tilde{q}^4}{\tilde{D}_i \tilde{D}_j \tilde{D}_k \tilde{D}_l} = -\frac{i\pi^2}{6} + O(\epsilon) (2)
\]

\[
b(ij; \tilde{q}^2) = b(ij) + \tilde{q}^2 b^{(2)}(ij), \quad c(ijk; \tilde{q}^2) = c(ijk) + \tilde{q}^2 c^{(2)}(ijk). \quad (3)
\]

Furthermore, by defining

\[
\mathcal{D}^{(m)}(q, \tilde{q}^2) \equiv \sum_{i_0 < i_1 < i_2 < i_3} \left[d(i_0 i_1 i_2 i_3; \tilde{q}^2) + \tilde{d}(q; i_0 i_1 i_2 i_3; \tilde{q}^2) \right] \prod_{i \neq i_0, i_1, i_2, i_3} \tilde{D}_i, \quad (4)
\]
the following expansion holds

\[D^{(m)}(q, \tilde{q}^2) = \sum_{j=2}^{m} \tilde{q}^{(2j-4)} d^{(2j-4)}(q), \] (5)

where the last coefficient is independent on \(q \)

\[d^{(2m-4)}(q) = d^{(2m-4)}. \] (6)

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \(\tilde{q}^2 \), in order to determine \(b^{(2)}(ij) \), \(c^{(2)}(ijk) \) and \(d^{(2m-4)}. \)
Calculate $N(q)$
We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
- Calculate $N(q)$ numerically via recursion relations.
Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
- Calculate $N(q)$ numerically via recursion relations.
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!
Summary

Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
- Calculate $N(q)$ numerically via recursion relations.
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients
Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
- Calculate $N(q)$ numerically via recursion relations.
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

- by evaluating $N(q)$ at certain values of integration momentum.
Summary

Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly.
- Calculate $N(q)$ numerically via recursion relations.
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

- by evaluating $N(q)$ at certain values of integration momentum.

Evaluate scalar integrals
Summary

Calculate $N(q)$

- We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly
- Calculate $N(q)$ numerically via recursion relations
- Just specify external momenta, polarization vectors and masses and proceed with the reduction!

Compute all coefficients

- by evaluating $N(q)$ at certain values of integration momentum

Evaluate scalar integrals

- massive integrals \rightarrow FF [G. J. van Oldenborgh]
- massless integrals \rightarrow OneLOop [A. van Hameren]
What we gain

- PV:

- Unitarity Methods:
What we gain

PV:

- \(N(q) \) or \(A(q) \) hasn't to be known analytically

Unitarity Methods:
What we gain

- PV:
 - $N(q)$ or $A(q)$ hasn't to be known analytically
 - No computer algebra

- Unitarity Methods:
What we gain

- PV:
 - $N(q)$ or $A(q)$ hasn’t to be known analytically
 - No computer algebra
 - Mathematica → Numerica

- Unitarity Methods:
What we gain

- PV:
 - $N(q)$ or $A(q)$ hasn’t to be known analytically
 - No computer algebra
 - Mathematica \rightarrow Numerica

- Unitarity Methods:
 - A more transparent algebraic method
What we gain

- **PV:**
 - $N(q)$ or $A(q)$ hasn’t to be known analytically
 - No computer algebra
 - Mathematica \rightarrow Numerica

- **Unitarity Methods:**
 - A more transparent algebraic method
 - A solid way to get all rational terms
Properties of the master equation
Properties of the master equation

- Polynomial equation in q
Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 - 2$ compared to m as a function of q
Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 - 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations
Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 - 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides ’unitarity method’
Properties of the master equation

- Polynomial equation in q
- Highly redundant: the a-terms have a degree of $m^2 - 2$ compared to m as a function of q
- Zeros of (a tower of) polynomial equations
- Different ways of solving it, besides 'unitarity method'

The $N \equiv N$ test

A tool to efficiently treat phase-space points with numerical instabilities
As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)

Input parameters for the reduction:
- External momenta p_i
- Masses of propagators in the loop
- Polarization vectors
As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m_f)

Input parameters for the reduction:
- External momenta p_i → in this example massless, i.e. $p_i^2 = 0$
- Masses of propagators in the loop → all equal to m_f
- Polarization vectors → various helicity configurations
\[
\frac{F_{++++}^f}{\alpha^2 Q_f^4} = -8
\]
\[
\frac{F^{f+++-+}}{\alpha^2 Q_f^4} = -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}}\right) B_0(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}}\right) B_0(\hat{t}) \\
- 8 \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}\right) [\hat{t} C_0(\hat{t}) + \hat{u} C_0(\hat{u})] \\
- 4 \left[\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}\right] D_0(\hat{t}, \hat{u})
\]

Massless four-photon amplitudes
\[
\frac{F^f_{++++}}{\alpha^2 Q_f^4} = -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}} \right) B_0(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}} \right) B_0(\hat{t}) \\
- 8 \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \frac{4m_f^2}{\hat{s}} \right) [\hat{t} C_0(\hat{t}) + \hat{u} C_0(\hat{u})] \\
- 4 \left[4m_f^4 - (2\hat{s}m_f^2 + \hat{t}\hat{u}) \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} + \frac{4m_f^2\hat{t}\hat{u}}{\hat{s}} \right] D_0(\hat{t}, \hat{u}) \\
+ 8m_f^2(\hat{s} - 2m_f^2)[D_0(\hat{s}, \hat{t}) + D_0(\hat{s}, \hat{u})]
\]
\[\frac{F^f_{++++}}{\alpha^2 Q^4_f} = -8 + 8 \left(1 + \frac{2\hat{u}}{\hat{s}} \right) B_0(\hat{u}) + 8 \left(1 + \frac{2\hat{t}}{\hat{s}} \right) B_0(\hat{t})
- 8 \left(\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \frac{4m_f^2}{\hat{s}} \right) \left[\hat{t} C_0(\hat{t}) + \hat{u} C_0(\hat{u}) \right]
- 4 \left[4m_f^4 - (2\hat{s} m_f^2 + \hat{t}\hat{u}) \frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} + \frac{4m_f^2\hat{t}\hat{u}}{\hat{s}} \right] D_0(\hat{t}, \hat{u})
+ 8m_f^2(\hat{s} - 2m_f^2)[D_0(\hat{s}, \hat{t}) + D_0(\hat{s}, \hat{u})] \]
Massless case: $[+ + - - - -] \text{ and } [+ - - + + -]$

Plot presented by Nagy and Soper hep-ph/0610028
(also Binoth et al., hep-ph/0703311)
Massless case: \([+ + \quad - - - - -] \) and \([+ - - + + -]\)

Analogous plot produced with OPP reduction
Massless case: $[+++---]$ and $[+++--++]$

Same plot as before for a wider range of θ.
Massless case: \([+ + - - - -]\) and \([+ + - - + -]\)

Same idea for a different set of external momenta
Six Photons with Massive Fermions

Massless result [Mahlon]
Six Photons with Massive Fermions

- Massless result [Mahlon]
- $m = 0.5$ GeV
Massless result [Mahlon]

- $m = 0.5$ GeV
- $m = 4.5$ GeV
Six Photons with Massive Fermions

Massless result [Mahlon]

- $m = 0.5 \text{ GeV}$
- $m = 4.5 \text{ GeV}$
- $m = 12.0 \text{ GeV}$
Six Photons with Massive Fermions

- Massless result [Mahlon]
- $m = 0.5$ GeV
- $m = 4.5$ GeV
- $m = 12.0$ GeV
- $m = 20.0$ GeV
\[q \bar{q} \rightarrow ZZZ \] VIRTUAL CORRECTIONS

\[\frac{1}{\epsilon^2} \text{ and } \frac{1}{\epsilon} \]

\[\sigma^{NLO,\text{virt}}_{\text{div}} = -C_F \frac{\alpha_s}{\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} (s_{12})^{-\epsilon} \left(\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} \right) \sigma^{LO} \]
$q\bar{q} \rightarrow ZZZ$ VIRTUAL CORRECTIONS

A still naive implementation
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational R_1 terms by CutTools
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
A still naive implementation

- Calculate the \(N(q) \) by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational \(R_1 \) terms by CutTools
- \(R_2 \) terms added by hand

Comparison with LMP

- Of course full agreement for the \(1/\epsilon^2 \) and \(1/\epsilon \) terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals
A still naive implementation

- Calculate the $N(q)$ by brute (numerical) force namely multiplying gamma matrices!
- Calculate 4d and rational R_1 terms by CutTools
- R_2 terms added by hand

Comparison with LMP

- Of course full agreement for the $1/\epsilon^2$ and $1/\epsilon$ terms
- An 'easy' agreement for all graphs with up to 4-point loop integrals
- A bit more work to uncover the differences in scalar function normalization that happen to show to order ϵ^2 thus influence only 5-point loop integrals.
q\bar{q} \rightarrow ZZZ VIRTUAL CORRECTIONS
$q\bar{q} \rightarrow ZZZ$ VIRTUAL CORRECTIONS
$q\bar{q} \rightarrow ZZZ$ VIRTUAL CORRECTIONS

Typical precision:
Typical precision:

- LMP: 9.573(66) about 1% error
Typical precision:

- LMP: 9.573(66) about 1% error
- OPP:
 \[
 -26.45706742815552
 -26.457067428165503661018557937723426
 \]
Typical precision:

- LMP: 9.573(66) about 1% error
- OPP:
 \[
 \begin{aligned}
 &-26.45706742815552 \\
 &-26.457067428165503661018557937723426
 \end{aligned}
 \]

Typical time: 10^4 times faster (for non-singular PS-points)
\[\sigma_{q\bar{q}}^{NLO} = \int_{VVV} \left[d\sigma_{q\bar{q}}^{B} + d\sigma_{q\bar{q}}^{V} + d\sigma_{q\bar{q}}^{C} + \int_{g} d\sigma_{q\bar{q}}^{A} \right] + \int_{VVVg} \left[d\sigma_{q\bar{q}}^{R} - d\sigma_{q\bar{q}}^{A} \right] \]

\[\sigma_{gq}^{NLO} = \int_{VVV} \left[+d\sigma_{gq}^{C} \int_{g} d\sigma_{gq}^{A} \right] + \int_{VVVg} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right] , \]
\[\sigma^{NLO}_{q\bar{q}} = \int_{VVV} \left[d\sigma^B_{q\bar{q}} + d\sigma^V_{q\bar{q}} + d\sigma^C_{q\bar{q}} + \int_g d\sigma^A_{q\bar{q}} \right] + \int_{VVVg} \left[d\sigma^R_{\bar{q}q} - d\sigma^A_{q\bar{q}} \right] \]

\[\sigma^{NLO}_{gq} = \int_{VVV} \left[+d\sigma^C_{gq} \int_g d\sigma^A_{gq} \right] + \int_{VVVg} \left[d\sigma^R_{gq} - d\sigma^A_{gq} \right], \]

\[\mathcal{D}^{q_1g_6,\bar{q}_2} = \frac{8\pi\alpha_s C_F}{2\tilde{x}} \frac{p_1 \cdot p_6}{p_1 \cdot p_2 - p_2 \cdot p_6 - p_1 \cdot p_6} \left(\frac{1 + \tilde{x}^2}{1 - \tilde{x}} \right) |\mathcal{M}^B_{q\bar{q}}(\{\tilde{p}\})|^2 \]

\[\tilde{x} = \frac{p_1 \cdot p_2 - p_2 \cdot p_6 - p_1 \cdot p_6}{p_1 \cdot p_2} \]
\[\sigma_{q\bar{q}}^{NLO} = \int_{VVV} \left[d\sigma_{q\bar{q}}^B + d\sigma_{q\bar{q}}^V + d\sigma_{q\bar{q}}^C + \int_g d\sigma_{q\bar{q}}^A \right] + \int_{VVVg} \left[d\sigma_{q\bar{q}}^R - d\sigma_{q\bar{q}}^A \right] \]

\[\sigma_{gq}^{NLO} = \int_{VVV} \left[+d\sigma_{gq}^C \int_g d\sigma_{gq}^A \right] + \int_{VVVg} \left[d\sigma_{gq}^R - d\sigma_{gq}^A \right], \]

\[\mathcal{D}_{q_1g_6,\bar{q}_2} = \frac{8\pi\alpha_s C_F}{2\tilde{x}} \frac{\left(1 + \tilde{x}^2\right)}{p_1 \cdot p_6 \left(1 - \tilde{x}\right)} |\mathcal{M}_{q\bar{q}}^B(\{\tilde{p}\})|^2 \]

\[\tilde{x} = \frac{p_1 \cdot p_2 - p_2 \cdot p_6 - p_1 \cdot p_6}{p_1 \cdot p_2} \]

\[d\sigma_{q\bar{q}}^R - d\sigma_{q\bar{q}}^A = \frac{1}{6} \frac{1}{N} \frac{1}{2s_{12}} \left[C_F |\mathcal{M}_{q\bar{q}}^R(\{p_j\})|^2 - \mathcal{D}_{q_1g_6,\bar{q}_2} - \mathcal{D}_{\bar{q}_2g_6,q_1} \right] d\Phi_{VVVg} \]
$$d\sigma^C_{q\bar{q}} + \int_g d\sigma^A_{q\bar{q}} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} \left(\frac{s_{12}}{\mu^2} \right)^{-\epsilon} \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} - \frac{2\pi^2}{3} \right] d\sigma_B(\{p_j\})$$

$$+ \frac{\alpha_s C_F}{2\pi} \int_0^1 dx \ K_{q\bar{q}}(x) \ d\sigma_B(x p_1, p_2; p_3, p_4, p_5) \ F_0(x p_1, p_2; p_3, p_4, p_5)$$

$$+ \frac{\alpha_s C_F}{2\pi} \int_0^1 dx \ K_{q\bar{q}}(x) \ d\sigma_B(p_1, x p_2; p_3, p_4, p_5) \ F_0(p_1, x p_2; p_3, p_4, p_5)$$
$$d\sigma^C_{q\bar{q}} + \int_g d\sigma^A_{q\bar{q}} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1+\epsilon)}{(4\pi)^{-\epsilon}} \left(\frac{s_{12}}{\mu^2} \right)^{-\epsilon} \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} - \frac{2\pi^2}{3} \right] d\sigma_B(\{p_j\})$$

$$+ \frac{\alpha_s C_F}{2\pi} \int_0^1 dx \, K_{q\bar{q}}(x) \, d\sigma_B(xp_1, p_2; p_3, p_4, p_5) \, F_0(xp_1, p_2; p_3, p_4, p_5)$$

$$+ \frac{\alpha_s C_F}{2\pi} \int_0^1 dx \, K_{q\bar{q}}(x) \, d\sigma_B(p_1, xp_2; p_3, p_4, p_5) \, F_0(p_1, xp_2; p_3, p_4, p_5)$$

$$K_{q\bar{q}}(x) = \left(\frac{1+x^2}{1-x} \right) \log \left(\frac{s_{12}}{\mu^2_F} \right) + \left(\frac{4 \log(1-x)}{1-x} \right) + (1-x) - 2(1+x) \log(1-x)$$
\[q\bar{q} \rightarrow ZZZ \quad \text{REAL CORRECTIONS} \]

\[\sigma_{gq}^{NLO} = \int_{VVV} \left[\int_g d\sigma^A_{gq} + d\sigma^C_{gq} \right] + \int_{VVVg} \left[d\sigma^R_{gq} - d\sigma^A_{gq} \right] \]
\[q\bar{q} \rightarrow \text{ZZZ} \quad \text{REAL CORRECTIONS} \]

\[\sigma_{gq}^{NLO} = \int_{VVVg} \left[\int_{g} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int_{VVV} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right] \]

\[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} = \frac{1}{N} \frac{1}{2s_{12}} \left[T_{R} |M_{gq}^{R}(\{p_{j}\})|^{2} F_{1}(\{p_{j}\}) - D_{g1g6,g2} F_{0}(\{\tilde{p}_{j}\}) \right] d\Phi_{VVVq} \]
\[\sigma_{gq}^{NLO} = \int_{VVV} \left[\int_{g} d\sigma_{gq}^{A} + d\sigma_{gq}^{C} \right] + \int_{VVVg} \left[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} \right] \]

\[d\sigma_{gq}^{R} - d\sigma_{gq}^{A} = \frac{1}{N} \frac{1}{2s_{12}} \left[T_{R} |M_{gq}^{R}(\{p_{j}\}')|^{2} F_{1}(\{p_{j}\}') - D_{g_{1}q_{6},q_{2}}^{g_{1}q_{6},q_{2}} F_{0}(\{\tilde{p}_{j}\}) \right] d\Phi_{VVVq} \]

\[D_{g_{1}q_{6},q_{2}}^{g_{1}q_{6},q_{2}} = \frac{8\pi\alpha_{s} T_{R}}{\tilde{x} 2 p_{1} \cdot p_{6}} \left[1 - 2 \tilde{x} (1 - \tilde{x}) \right] |M_{q\bar{q}}^{B}(\{\tilde{p}_{j}\})|^{2} \]
\[\frac{d\sigma^C_{gq}}{d\bar{q}} + \int d\sigma^A_{gq} = \frac{\alpha_s T_R}{2\pi} \int_0^1 dx \mathcal{K}_{gq}(x) d\sigma_B(xp_1, p_2; p_3, p_4, p_5) F_0(xp_1, p_2; p_3, p_4, p_5) \]

\[\mathcal{K}_{gq}(x) = [x^2 + (1 - x)^2] \log \left(\frac{s_{12}}{\mu_F^2} \right) + 2x(1 - x) + 2[x^2 + (1 - x)^2] \log(1 - x) \]
\[d\sigma^C_{\bar{q}q} + \int d\sigma^A_{\bar{q}q} = \frac{\alpha_s T_R}{2\pi} \int_0^1 dx \mathcal{K}_{\bar{q}q}(x) d\sigma_B(xp_1, p_2; p_3, p_4, p_5) F_0(xp_1, p_2; p_3, p_4, p_5) \]

\[\mathcal{K}_{\bar{q}q}(x) = [x^2 + (1 - x)^2] \log \left(\frac{s_{12}}{\mu_F^2} \right) + 2x(1 - x) + 2[x^2 + (1 - x)^2] \log(1 - x) \]

- check also with phase-space slicing method
\[q\bar{q} \rightarrow ZZZ \text{ NLO} \]

<table>
<thead>
<tr>
<th>scale</th>
<th>(\sigma_0)</th>
<th>(\sigma_V/\sigma_0)</th>
<th>(\sigma_R)</th>
<th>(\sigma_{NLO})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = M_Z)</td>
<td>1.481(5)</td>
<td>0.536(1)</td>
<td>0.238(2)</td>
<td>2.512(2)</td>
</tr>
<tr>
<td>(\mu = 2M_Z)</td>
<td>1.487(5)</td>
<td>0.481(1)</td>
<td>0.232(2)</td>
<td>2.434(2)</td>
</tr>
<tr>
<td>(\mu = 3M_Z)</td>
<td>1.477(5)</td>
<td>0.452(1)</td>
<td>0.232(2)</td>
<td>2.376(2)</td>
</tr>
<tr>
<td>(\mu = 4M_Z)</td>
<td>1.479(5)</td>
<td>0.436(1)</td>
<td>0.232(2)</td>
<td>2.355(2)</td>
</tr>
<tr>
<td>(\mu = 5M_Z)</td>
<td>1.479(5)</td>
<td>0.424(1)</td>
<td>0.237(2)</td>
<td>2.343(2)</td>
</tr>
</tbody>
</table>
$q\bar{q} \rightarrow ZZZ \text{ NLO}$
Reduction at the integrand level
Reduction at the integrand level

- changes the computational approach at one loop
Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem
Outlook

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current
Outlook

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
Outlook

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections
Outlook

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections
- Automatize through Dyson-Schwinger equations
Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections
- Automatize through Dyson-Schwinger equations

A generic NLO calculator seems feasible
Outlook

Reduction at the integrand level

- changes the computational approach at one loop
- Numerical but still algebraic: speed and precision not a problem

Current

- Understand potential stability problems
- Combine with the real corrections
- Automatize through Dyson-Schwinger equations

A generic NLO calculator seems feasible

CUTTOOLS version 0. is ready!